Bayesian Variational Inference for Exponential Random Graph Models
نویسندگان
چکیده
منابع مشابه
Bayesian inference of exponential random graph models under measurement errors
While the impact of measurement errors inherent in network data has been widely recognized, relatively little work has been done to solve the problem mainly due to the complex dependence nature of network data. In this paper, we propose a Bayesian inference framework for summary statistics of the true underlying network, based on the network observed with measurement errors. To the best of our ...
متن کاملBayesian inference of exponential random graph models for large social networks
This paper addresses the issue of sampling from the posterior distribution of exponential random graph (ERG) models and other statistical models with intractable normalizing constants. Existing methods based on exact sampling are either infeasible or require very long computing time. We propose and study a general framework of approximate MCMC sampling from these posterior distributions. We als...
متن کاملEfficient Bayesian inference for exponential random graph models by correcting the pseudo-posterior distribution
Exponential random graph models are an important tool in the statistical analysis of data. However, Bayesian parameter estimation for these models is extremely challenging, since evaluation of the posterior distribution typically involves the calculation of an intractable normalizing constant. This barrier motivates the consideration of tractable approximations to the likelihood function, such ...
متن کاملExponential random graph models
Synonyms p* models, p-star models, p1 models, exponential family of random graphs, maximum entropy random networks, logit models, Markov graphs Glossary • Graph and network: the terms are used interchangeably in this essay. • Real-world network: (real network, observed network) means network data the researcher has collected and is interested in modelling. • Ensemble of graphs: means the set of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2020
ISSN: 1061-8600,1537-2715
DOI: 10.1080/10618600.2020.1740714